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Abstract. The magnetic properties (transition temperature, compensation temperature and
magnetization curve) of a decorated Ising system consisting of three kinds of magnetic and
non-magnetic atom on the two-dimensional lattice, of which one with spin 1/2 forms a square
lattice and the other two (a magnetic atom with a sfif> 1/2) and a non-magnetic atom)
occupy randomly the middle points of each bond in the square lattice, are investigated within
the framework of the effective-field theory with correlations. Particular emphasis is given to the
effects of § and crystal-field interactio® in the decorated magnetic atom on them. We find
that the compensation temperature in the system may exhibit some interesting behaviours with
the variation inS and D as well as the concentratign of the decorated spifi-atoms, such as

the possibility of two compensation points induced by the variatiop.in

1. Introduction

Ferrimagnetism has been extensively investigated in the past both experimentally and
theoretically, since important magnetic materials for applications, such as garnets and
ferrites, are ferrimagnetic. Most of the theoretical studies have discussed the fact that
there exists only one compensation point in ferrimagnetic systems [1,2]. Recently, the
possibility of many compensation points in a variety of ferrimagnetic systems has been
clarified theoretically [3-8].

Decorated Ising spin models, which were originally introduced into the literature by
Syozi [9], have been studied many years ago as models exhibiting ferrimagnetism. The
arrangement of atoms was like that in the normal spinel. The temperature dependence of
the resultant magnetization in the decorated ferrimagnetic models has been investigated and
the results have shown some characteristic features in ferrimagnetism [10, 11]. Although the
decorated Ising systems with< 4 (z is the coordination number), such as the square lattice
and honeycomb lattice, have been considered as exactly solvable, the decorated models
studied so far have been restricted to the situation in which the crystal-field interdztion
in the decorated magnetic atoms is considered t@be oo [10, 11]. In the limit, some
interesting phenomena in ferrimagnetism were obtained for the system with two types of
magnetic atom randomly decorated on each bond in the spin-1/2 Ising lattice, such as the
possibility of two compensation points [11]. As far as we know, however, no studies have
been made on the decorated ferrimagnetic Ising system with a finite (especially negative)
crystal-field interaction.

The aim of this work is to investigate the magnetic properties of the decorated
ferrimagnetic Ising system consisting of three kinds of magnetic and non-magnetic atom,
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as depicted in figure 1, in which all open circles are always occupied by a magnetic (or A)
atom with S, = 1/2 but any full circle is occupied not by a definite atom but randomly
by a magnetic (or B) atom witlfz = S(> 1/2) and crystal-field interactio®z = D or a
non-magnetic (or C) atom. The problem is studied within the framework of the effective-
field theory (EFT) [12]. Particular attention is directed to the effectsSpfD and the
concentrationp of the decorated B atoms on the compensation temperature.

Figure 1. The two-dimensional decorated spin system with three kinds of atom, of which the
magnetic A atoms with spin 1/2 form the sublattite (the square lattice) and the other two
(the spins B atom and the non-magnetic C atom) are randomly distributed on the sublagtice
(full circles).

The outline of this work is as follows. In section 2, we present the general formulation
for the ferrimagnetic Ising system with decorated magnetic and non-magnetic atoms in the
EFT. An exact formulation for evaluating the compensation temperature of the system
is given. In section 3, the magnetic properties (transition temperature, compensation
temperature and magnetization curve) of the system on the two-dimensional lattice are
examined numerically by changing the valuesso and p. We find that the compensation
temperature may exhibit a variety of interesting behaviours depending on the valSes of
D and p.

2. Formulation

We consider a decorated two-sublattice ferrimagnetic Ising system, as depicted in figure 1,
where the total number of full circles on the sublatticgis 2N, 2Np points of which are
occupied by magnetic B atoms with spgfr(> 1/2), and 2V(1— p) points by non-magnetic

C atoms. p is the concentration of B atoms. The Hamiltonian of the system is given by

H=17Y piSitn—J' Y pini—DY (S5)%, @)
(i,m) @@, )) m

whereu? on the open circles takes the valuestaf/2 and the spin operatdf’, randomly
distributed on the full circles can take tli2S + 1)-values allowed for a spi (S > 1/2).

The first two summations are carried out only over nearest-neighbour pairs of spins between
L1 and L, and on the sublatticé;. J(> 0) andJ'(> 0) are the exchange interactiors,

is the random variable that takes the value of unity or zero, depending on whether the site
m on the sublattice., is occupied by a magnetic B atom (with a probability or by a
non-magnetic C atom (with a probability-1 p).
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The main problem is now the evaluation of the mean valug$ andg,, (S,) where the
angular brackets denote the usual thermal averages. According to the Ising spin identities
and the differential operator technique, the quantities can be obtained in a simple fashion, as
discussed in the review article in [12]. After performing the random configuration average,
the averaged values can be exactly presented as

o = (i), = <<{ HEXp(—an+5§i+s)}{ 11 exp(bwc)}» feyx=0y=0 (2)
§=1 §=1 r

and

EdSE)
(Em)r
AV ©
= <$m<{ l_[ exlx_aﬂm+8/’f)}>> Fy(x)|x=0
€\ 1L ,

wherea = JV, andb = J'V,, with V, = 9/dx andV, = 9/dy the differential operators.

8, 8’ ands” denote the nearest neighbours of the centrali Siten, andz is the coordination
number of sublatticd.,. Here,(---), denotes the random configuration average for the B
atoms on the sublattic,. The functionf (x, y) in (2) is defined by

1
flx,y) = > tanh(g(x + y)) 4)

whereg = 1/kgT. On the other hand, the functiaf (x) depends on the spin valueof
the magnetic B atoms. When the valueSfs given byS = 1 and 3/2, we have

2 sinh(Bx)
F () = 5 coshipx) + exp—Dp) (52)
and
FL(x) = } 3sinh(38x/2) + exp(—2Dp) sinh(Bx/2) . (5b)
’ 2 cosh(3Bx/2) + exp(—2DpB) cosh(Bx/2)
The averaged total magnetizatiaf is then given by
% =0 + 2pm. (6)

Then, using the identity
exp(—api) = coshla/2) — 2u; sinh(a/2) @)
the sublattice magnetization can be evaluated exactly as

m= —%l)r@m((u;ﬂ + Wi K
=-20K (8)
with
K = 2sinha/2) cosha/2) Fy(x)|x=0
= F,(x). 9)

Thus, the total magnetizatiol in the system can be expressed exactly as

M
~ = o[l —-4pF(J)]. (10)
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Figure 2. Equation (13), 1= 4pF,(J), plotted in T—D space, changing the value pf (a)
§S=1;(b)s=23/2

In particular, whenD = oo, the functionF;(x) is given by
Fy(x) = Stanh(SBx) (11)
from which (10) for the pure system with = 1 reduces to

% = o[1 — 4Stanh(SBJ)]. (12)

Since My = No is the spontaneous magnetization of the sublatfigethe relation (12)
has a form similar to the exact expression (or (3.5)) in [10], although(8hbh in (12) is
replaced by tant2sJ) in [10].

In a ferrimagnet, the sublattice magnetizatiensand m do not have the same sign,
and there may be a compensation temperaligtg, p at which the total magnetizatioW
reduces to zero even though# 0 andm # 0. From (10), the compensation point in the
system seems to be exactly given by

1=4pF,(J). (13)

Equation (13) is plotted in figures 2(a) and 2(b) as a functiorDdby selecting the two
values of S, namelyS = 1 and S = 3/2, respectively, and changing the value of
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Figure 2. (Continued.)

However, in order that the temperature determined from (13) is actually the compensation
temperature, it must be lower than the transition temperature of the system. In other words,
o must be not equal to zero even when equation (13) is satisfied.

The problem is now how to evaluate the sublattice magnetizatiqior (2)) in the
system, which can be expressed as

o= <<{ H[éiﬂs exp(—aSi ;) +1— &) } < 1_[ exp(b,u,-wz)>>> £ ) leoy-0 (14)
5=1 §=1 r

where we usedé;)"” = & (n is an integer). For this, we can use the Van der Waerden
identities, such as

exp(—aS?) = 1 — ¢ sinha) + (57)?[cosh(a) — 1] fors=1 (15)
and

exp(—aS?) = A(a) — B(a)S? + C(a)(S7)? — D(a)(57)? for S =3/2 (16)
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with
A(a) = g[9cosha/2) — cosh3a/2)]
B(a) = %[27 sinh(a/2) — sinh(3a/2)]
C(a) = 3[cosh3a/2) — coshia/2)]
D(a) = 3[sinh(3a/2) — 3sinh(a/2)]

(17)

as well as (7).

Even if we use the Van der Waerden identity, it is generally impossible to calculate
the sublattice magnetizatiom exactly, although the systems with = oo in [10, 11]
are exceptional cases. That is to say, if we try to treat exactly all the spin—spin
correlations appearing in the sublattice magnetization through the expansion of (14) and to
perform properly the random configuration average, the problem becomes mathematically
untractable. As discussed in the previous work, therefore, the decoupling approximation, or

(TR C TSNS M (7)) I (79 I (€1 10 IR (758 I (753 (18)

with j # k #1#---#m # n andx; = §;5;, has been used. The approximation (or the
EFT) corresponds essentially to the Zernike approximation [12—14]. The approximation has
been successfully applied to a great number of disordered systems [12].

Within the framework of the EFT, the sublattice magnetizatioran be written in a
compact form as follows:

o = [p{1 —msinha) + g{cosha) — 1}} + 1 — p]*
x[cosh(b/2) + 20 sinh(b/2)]* f (x, ¥)|x=0,y=0 fors=1 (29)

and

o =[p{A(a) — B(aym + C(a)q — D(a)r} + 1 — pJ*

x[cosh(b/2) + 20 sinh(b/2)]* f (x, ¥)|x=0,y=0 for § =3/2 (20)

where the parametegsandr are defined by
z\2 233
g = (Em ((S5)Nr . (Em((S;) »r. 21)
(Em)r (Em)r

Within the EFT, we can easily obtain, in the same wayaandm,

q=01+4°0, (22)

r=—20R (23)

with
01 =cost(a/2) Gy(x) |r—o
= 3[G:(J) — G,(0)]
05 = sintf(a/2) Gy(x)|x—o
= 3[G.()) — G,(0)]
R =2 coshia/2) sinh(a/2) R,(x) |x—o
= Rs(j)

where the function§, (x) and R, (x) depend on the value ¢fand are given in the appendix.

(24)
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3. The two-dimensional decorated system

In this section, let us examine the magnetic properties of the two-dimensional decorated
ferrimagnetic system with = 4 depicted in figure 1, where the sublattite forms the
square lattice, on the basis of the formulation given in section 2. Then, let us study them
separately by taking the two values &f namelyS = 1 andS = 3/2, in sections 3.1 and

3.2.

3.1. The decorated system wigh= 1

Substitutingz = 4, (8) and (22) into (19) and expanding the right-hand side of (19), we
obtain the polynomial equation fer with odd powers:

o =aoc +bod+... (25)
where the coefficients, b, ... can be easily derived from (19), e.g.
a=8p(KA1+ A2) (26)

with
A1 =sinh@)[1 + pQifcosta) — P cosf(b/2)  f(x, y)li=0,=0
Az = [1 4 pQafcosha) — 1}]* sinh(b/2) cosi(b/2) S (x, ¥)|x=0,y=0

When the temperature is higher than the transition temperature, the whole system
is demagnetized. The demagnetization of the system may be realized continuously or
discontinuously at the transition temperature. For the second-order transition, the transition
temperatureTc can be determined by considering only the linear term in (25): It can be
determined by the conditions

a=1 b<O. (28)

In the vicinity of the second-order phase transition line, the sublattice magnetizati®n
given by

(27)

o= . (29)

The right-hand side must be positive. If this is not the case, the transition is of the first
order, and hence the point at which

a=1 b=0 (30)

is the tricritical point. However, examining the numerical values @ndb in the system
for all values of D, p anda defined by

a=1J/J (31)

one can find that the condition (30) is not satisfied in the two-dimensional decorated system
with § = 1.

Figure 3 shows the variations in the transition temperafyreletermined from (28) as
a function of D/ J for the two systems witlp = 1.0 andp = 0.5, selecting the five values
of @. The solid curves labelleg = 1.0 and 0.5 are the same as the corresponding curves
obtained in figure 2(a). Accordingly, in order that the compensation point (or points) may
exist in the system with the fixed values pfand «, each solid curve a—j must be higher
than the solid curves labelled = 1.0 and 0.5. For instance, the system wih= 1.0
anda = 2.87 can exhibit one compensation point in the regioh0 < D/J < 0.0 and
two compensation points in the regienl.87 < D/J < —1.0. The system witlp = 0.5
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and o = 2.87 exhibits one compensation point for the regibrJ > —1.0. In this way,

comparing the behaviour df¢ in the figure with the results of figure 2(a), one can obtain
much information on the behaviour @0y p in the system, although the system with
a = 0.0 (see curves i and j) does not exhibit any compensation point for any valyes of

4.07 kT
J

40 3

2.87 d

0.5 h j

-3.0 =20 ~-1.0 0 1.0

Figure 3. The phase diagram in tHe-D plane for the decorated ferrimagnetic system depicted
in figure 1, when the value of is fixed at 1. The curves labellgd= 1.0 and 0.5 correspond
to the results obtained from the relation=14p F(J) in figure 2(a). Curves a—j represefit.
Curve a (forp = 1.0) and curve b (forp = 0.5) are obtained for the system with = 4.0.
Curve c (forp = 1.0) and curve d (fopp = 0.5) are for the system with = 2.87. Curve e (for

p = 1.0) and curve f (forp = 0.5) are for the system with = 1.5. Curve g (forp = 1.0) and
curve h (forp = 0.5) are for the system withh = 0.5. Curve i (forp = 1.0) and curve j (for

p = 0.5) are for the system witkk = 0.0.

In figure 4, therefore, the concentration dependencds &nd Tco p are depicted for
the system withw = 2.87, selecting the typical values @/J from figure 3. As is seen
from the figure, theTc versusp curve does not exhibit a large variation for the change in
D/J, when the value of/’ (or «) takes a value higher tham = 0.5, such asx = 2.87.
On the other hand, th&:op versusp curve in the system may exhibit a characteristic
feature when the value ab/J becomes smaller than1.0. As shown forD/J = —1.5,
the system shows two compensation points in the regiBn<Op < 1.0 although, for the
systems withD/J = 0.0 andD/J = —1.0, only one compensation point can be obtained
in the regions @5 < p < 1.0and 05 < p < 1.0, respectively. Here, note that these results
are consistent with those predicted in figure 3.

Now, in order to prove whether the predictions Ty, p obtained from figures 2(a),
3 and 4 in the decorated two-dimensional ferrimagnetic system Svithl are correct or
not, it is necessary to study the temperature dependence of the total magnetization (6) or
(10). The thermal variation iM in the system withy = 4 can also be obtained by solving
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Figure 4. The phase diagraniT¢ and Tcoump) in T—p space for the system with = 2.87,
when three values ob/J are selected: curve B/J = 0.0; curve b,D/J = —1.0; curve c,
D/J = —15.

the coupled equations fer, m and g of section 2 numerically. The numerical results of
the system withw = 2.87 are presented in figure 5, selecting typical valuep ehd D/J
from figure 4. Curves a, b and ¢ correspond to the thermal variation$ in the system
with p = 0.5 when the three values db/J are selected as 0.6;1.0 and—1.5. These
results are equivalent to the predictions%fyp, p Obtained from figure 4. Curve a may
exhibit one compensation point at a finite temperature but curves b and d do not exhibit
any compensation point at a finite temperature, while curve ¢ has a characteristic behaviour
showing a minimum and a maximum beldi¥. Curve d, which is obtained for the system
with p = 0.9 andD/J = —1.5, may have two compensation points at the same temperature
as those predicted from figure 4. Thus, one can understand that a variety of features for
Tcoup in the decorated system with= 1 is obtained correctly from figures 2(a), 3 and 4.
Finally, it is worth noting that the saturation magnetization\pfin figure 5 is given by
|M|/N = 0.5 for the curves a, ¢ and d, although for curve b it reduces to zero. The reasons
are as follows. Curve a is obtained fér/J = 0.0 and p = 0.5, so that the sublattice
magnetizationsr andm at T = 0 K are given byoc = 1/2 andm = —1.0, and hence
|[M|/N = 0.5. On the other hand, for the systems withJ < —1.0 the spin state of the
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kT
J

Figure 5. The temperature dependence of the total magnetizadomplotted for the two-
dimensional ferrimagnetic system with= 1 ande = 2.87, when four pairs of values db/J

and p are selected: curve d&/J = 0.0, p = 0.5; curve b,D/J = —1.0, p = 0.5; curve c,
D/J =-15, p=0.5; curve d,D/J = —-15, p = 0.9.

decorated B atoms i}, = 0.0 at T = 0 K, independent op, from which the saturation
magnetization of curves ¢ and d is also given MyJ = 0.5. However, the value of
D/J = —1.0 is marginal, and hence half of the decorated magnetic B atoms are in the
St = —1.0 state but the other half are in tt$ = 0.0 state atl’ = 0 K. From this, the
saturation magnetizatiot for the system withD/J = —1.0 andp = 0.5 reduces to zero,
sinces = 1/2 andm = —1/2 atT =0 K.

3.2. The decorated system wigh= 3/2

As discussed in section 3.1, the curves in figure 2(a) give us some indication of the
compensation point (or points) in the system with= 1, when the transition temperatufe

is larger than the corresponding curve in figure 2. As predicted in figure 2(b), on the other
hand, the behaviour of equation (13) obtained for the decorated ferrimagnetic system with
S = 3/2 is rather different from that of figure 2(a). It implies that the feature$Qfy

in the system withS = 3/2 may be rather different from those discussed in section 3.1.

Let us here study the phase diagrafp @ndT¢oyp) Of the two-dimensional decorated
system withS = 3/2 andz = 4. Following the same procedure as in section 3.1, we can
also obtain an equation similar to (25) or (29). Then, for any valug3,qg# and«, one can
find that the condition (28) is always satisfied for the two-dimensional systemSwitt8/2
and hence the phase transition is also second order.

Figure 6 shows the phase diagram7ir-D space for the two-dimensional decorated
system withS = 3/2, when three values af(= 3.5, 1.5 and 0.0) and three values of
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p (= 1.0, 0.5 and 0.4) are selected. The thin and thick solid lines repregerand
equation (13), respectively (or the corresponding results in figure 2(b)). Therefore, in order
for a compensation point (or points) to exist in the system with fixed values arid p,

the T¢ line must be higher than the corresponding thick line. For the case-efl.5, a
compensation point can be found in the system witl 1.0 for the regionD/J < —2.02

and in the system witlp = 0.5 for the region—1.0 < D/J < —0.76. However, two
compensation points can be obtained for the systemawithl.5 andp = 0.4 in the region
—0.79 < D/J < —0.5. Thus, comparing the results of figure 6 with those of figure 3 or
figure 4, one can find that the roles pffor finding the two compensation points are rather
different, depending on whether the valueSin the system is 1 or 3/2.

jxr
4.0 5

~-3.0 -2.0 -1.0 0 1.0 D 2.0

Figure 6. The phase diagram in thE-D plane for the decorated ferrimagnetic system, when
the value ofS is fixed at 3/2. The thick solid lines labellgd= 1.0, 0.5 and 0.4 are the results
obtained from equation (13) and the thin solid lines repregentCurves a, b and c are obtained
for the system withw = 3.5, selecting three values ¢f (curve a,p = 1.0; curve b,p = 0.5;
curve ¢,p = 0.4). Curves g by and ¢ are for the system witlk = 1.5 and curves’g b” and

¢’ are for the system witlk = 0.0, when three values gf are selected as (curvesand 4,

p =1.0; curves band i§, p = 0.5; curves tand ¢, p = 0.4).

In figure 7, the phase diagram of the system with- 3/2 ando = 1.5 is depicted in
the T—p space, changing the value @&f/J. The thin and thick solid lines represeri
andTcoump, respectively. The figure clearly indicates that the role dbr finding the two
compensation points in the decorated system With 3/2 is different from that in figure 4.
The possibility of two compensation points in the system wfite= 3/2 ande = 1.5 can
be found in the region .55 < p < 0.5 whenD/J = —0.7. In figure 4, on the other
hand, the possibility of two compensation points in the system §ith1.0, « = 2.87 and
D/J = —1.5 is found even for the purép = 1.0) case but disappears for a concentration
less thanp = 0.8. Thus, for the system witli = 3/2 the possibility of two compensation
points can be obtained only when there is a large dilution of hon-magnetic atoms, namely
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0.2 < p < 0.5, in the decorated sites (or full circles in figure 1), depending on the values
of a negativeD/J and a finite value o#.

KT
J L=1.5
\ Voo \
\ \\ \\ \\ \
L \ \
2.0 a \ \ \\ \\ \
b A \\ v \
! vy \
¢ v \
d : % \ \
\ v \ A
e
; §:\ I
-\
e
1.0F
b a
d c
f
Tcomp
1.0 0.8 0.6 04 p» 0.2 0.0

Figure 7. The phase diagram7§¢ and Tcomp) in T—p space for the system with = 1.5,
when six values ofD/J are selected: curve d@)/J = 0.0; curve b,D/J = —0.5; curve c,
D/J = -0.7; curve d,D/J = —1.0; curve e,D/J = —1.5; curve f,D/J = —2.5.

4. Conclusions

In this work, we have studied the magnetic propertigs (o p and magnetization curve)

of the decorated ferrimagnetic Ising system with three kinds of atom, of which one with spin
1/2 forms the sublatticé ; and the other two (a spifi-(> 1/2) magnetic atom and a non-
magnetic atom) are randomly distributed on the sublatfice They have been discussed
within the framework of the EFT with correlations. Numerical results are obtained in
section 3 for the two-dimensional lattice. In particular, we have examined in detail the
effects of crystal-field interaction and spin value in the spiatoms onTc andTcoyp. AS
shown in figures 2—7, the results obtained are extremely interesting.

In this work, we have applied the EFT to numerical evaluations @nd 7 for the
two-dimensional system wit§ = 1 or § = 3/2. However, one should note the following
facts. If the exact calculation can be made for a system with a finite (negative) valie of
the exactl¢ will be lower than that obtained from the EFT, as discussed for the mixed spin-
1/2 and spinS Ising system on the honeycomb lattice [15] having a Hamiltonian similar
to (1). On the other hand, the evaluation Bfy,p in the decorated ferrimagnetic Ising
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system can be done exactly as noted in sections 2 and 3. The situation for finding the
compensation point (or points) in the decorated system $ittoes not change even when

the exactT¢ is obtained, since th&:o,p lines in figures 3—7 are the exact results. Then,
the only difference is that the critical value @fand p for finding Tcoyp Will be changed

in the phase diagrams.

Finally, we have shown in this paper that the decorated ferrimagnetic Ising system with
magnetic and non-magnetic atoms randomly distributed on the sublaficeay exhibit
many unexpected features in the phase diagrams, depending on the valDes odnd
S. The possibilities of two compensation points are clearly different in the systems with
S =1 orS = 3/2 and the thermal variation iM for curve c in figure 5 exhibited a
maximum and a minimum beloW,.. These results have not been predicted in ti&eIN
theory of ferrimagnetism [1,2]. Thus, we may conclude by saying that the decorated
ferrimagnetic Ising system investigated here is a fruitful system from both the theoretical
and the materials science point of view. We hope that the present study will stimulate
experimental and theoretical work on the systems considered here.

Appendix.

The functionsG,(x) and R,(x) in (24) are defined by

Gr = Zcoshzisiheﬂ;;(—ﬂm for§=1 (A1)
and

= %, gc‘c:)‘:(';i)f//z?: ef()l(tf—_ ZEﬂDD))cZOsi(k/(Bix//Z? (A2)
Roto = ;2502;;(25)/64)2 lli:(pi;;il))is;nhk;i%? for § =3/2. (A3)
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