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Abstract. The magnetic properties (transition temperature, compensation temperature and
magnetization curve) of a decorated Ising system consisting of three kinds of magnetic and
non-magnetic atom on the two-dimensional lattice, of which one with spin 1/2 forms a square
lattice and the other two (a magnetic atom with a spinS (> 1/2) and a non-magnetic atom)
occupy randomly the middle points of each bond in the square lattice, are investigated within
the framework of the effective-field theory with correlations. Particular emphasis is given to the
effects ofS and crystal-field interactionD in the decorated magnetic atom on them. We find
that the compensation temperature in the system may exhibit some interesting behaviours with
the variation inS andD as well as the concentrationp of the decorated spin-S atoms, such as
the possibility of two compensation points induced by the variation inp.

1. Introduction

Ferrimagnetism has been extensively investigated in the past both experimentally and
theoretically, since important magnetic materials for applications, such as garnets and
ferrites, are ferrimagnetic. Most of the theoretical studies have discussed the fact that
there exists only one compensation point in ferrimagnetic systems [1, 2]. Recently, the
possibility of many compensation points in a variety of ferrimagnetic systems has been
clarified theoretically [3–8].

Decorated Ising spin models, which were originally introduced into the literature by
Syozi [9], have been studied many years ago as models exhibiting ferrimagnetism. The
arrangement of atoms was like that in the normal spinel. The temperature dependence of
the resultant magnetization in the decorated ferrimagnetic models has been investigated and
the results have shown some characteristic features in ferrimagnetism [10, 11]. Although the
decorated Ising systems withz 6 4 (z is the coordination number), such as the square lattice
and honeycomb lattice, have been considered as exactly solvable, the decorated models
studied so far have been restricted to the situation in which the crystal-field interactionD

in the decorated magnetic atoms is considered to beD = ∞ [10, 11]. In the limit, some
interesting phenomena in ferrimagnetism were obtained for the system with two types of
magnetic atom randomly decorated on each bond in the spin-1/2 Ising lattice, such as the
possibility of two compensation points [11]. As far as we know, however, no studies have
been made on the decorated ferrimagnetic Ising system with a finite (especially negative)
crystal-field interaction.

The aim of this work is to investigate the magnetic properties of the decorated
ferrimagnetic Ising system consisting of three kinds of magnetic and non-magnetic atom,
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as depicted in figure 1, in which all open circles are always occupied by a magnetic (or A)
atom with SA = 1/2 but any full circle is occupied not by a definite atom but randomly
by a magnetic (or B) atom withSB = S(> 1/2) and crystal-field interactionDB = D or a
non-magnetic (or C) atom. The problem is studied within the framework of the effective-
field theory (EFT) [12]. Particular attention is directed to the effects ofS, D and the
concentrationp of the decorated B atoms on the compensation temperature.

Figure 1. The two-dimensional decorated spin system with three kinds of atom, of which the
magnetic A atoms with spin 1/2 form the sublatticeL1 (the square lattice) and the other two
(the spin-S B atom and the non-magnetic C atom) are randomly distributed on the sublatticeL2

(full circles).

The outline of this work is as follows. In section 2, we present the general formulation
for the ferrimagnetic Ising system with decorated magnetic and non-magnetic atoms in the
EFT. An exact formulation for evaluating the compensation temperature of the system
is given. In section 3, the magnetic properties (transition temperature, compensation
temperature and magnetization curve) of the system on the two-dimensional lattice are
examined numerically by changing the values ofS, D andp. We find that the compensation
temperature may exhibit a variety of interesting behaviours depending on the values ofS,
D andp.

2. Formulation

We consider a decorated two-sublattice ferrimagnetic Ising system, as depicted in figure 1,
where the total number of full circles on the sublatticeL2 is 2N , 2Np points of which are
occupied by magnetic B atoms with spinS (> 1/2), and 2N(1−p) points by non-magnetic
C atoms.p is the concentration of B atoms. The Hamiltonian of the system is given by

H = J
∑
(i,m)

µz
i S

z
mξm − J ′ ∑

(i,j)

µz
i µ

z
j − D

∑
m

(Sz
m)2ξm (1)

whereµz
i on the open circles takes the values of±1/2 and the spin operatorSz

m randomly
distributed on the full circles can take the(2S + 1)-values allowed for a spinS (S > 1/2).
The first two summations are carried out only over nearest-neighbour pairs of spins between
L1 andL2 and on the sublatticeL1. J (> 0) andJ ′(> 0) are the exchange interactions.ξm

is the random variable that takes the value of unity or zero, depending on whether the site
m on the sublatticeL2 is occupied by a magnetic B atom (with a probabilityp) or by a
non-magnetic C atom (with a probability 1− p).
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The main problem is now the evaluation of the mean values〈µz
i 〉 andξm〈Sz

m〉 where the
angular brackets denote the usual thermal averages. According to the Ising spin identities
and the differential operator technique, the quantities can be obtained in a simple fashion, as
discussed in the review article in [12]. After performing the random configuration average,
the averaged values can be exactly presented as

σ = 〈〈µz
i 〉〉r =

〈〈{ z∏
δ=1

exp(−aSz
i+δξi+δ)

}{ z∏
δ′=1

exp(bµi+δ′z )

}〉〉
r

f (x, y)|x = 0, y = 0 (2)

and

m = 〈ξm〈Sz
m〉〉r

〈ξm〉r

= 1

〈ξm〉r

〈
ξm

〈{ 2∏
δ′′=1

exp(−aµm+δ′′z )

}〉〉
r

Fs(x)|x=0

(3)

wherea = J∇x andb = J ′∇y , with ∇x = ∂/∂x and∇y = ∂/∂y the differential operators.
δ, δ′ andδ′′ denote the nearest neighbours of the central sitei or m, andz is the coordination
number of sublatticeL1. Here,〈· · ·〉r denotes the random configuration average for the B
atoms on the sublatticeL2. The functionf (x, y) in (2) is defined by

f (x, y) = 1

2
tanh

(
β

2
(x + y)

)
(4)

whereβ = 1/kBT . On the other hand, the functionFs(x) depends on the spin valueS of
the magnetic B atoms. When the value ofS is given byS = 1 and 3/2, we have

Fs(x) = 2 sinh(βx)

2 cosh(βx) + exp(−Dβ)
(5a)

and

Fs(x) = 1

2

3 sinh(3βx/2) + exp(−2Dβ) sinh(βx/2)

cosh(3βx/2) + exp(−2Dβ) cosh(βx/2)
. (5b)

The averaged total magnetizationM is then given by

M

N
= σ + 2pm. (6)

Then, using the identity

exp(−aµz
i ) = cosh(a/2) − 2µz

i sinh(a/2) (7)

the sublattice magnetizationm can be evaluated exactly as

m = − 1

〈ξm〉r 〈ξm〈(µz
m+1 + µz

m+2)〉〉rK
= −2σK (8)

with

K = 2 sinh(a/2) cosh(a/2) Fs(x)|x=0

= Fs(x). (9)

Thus, the total magnetizationM in the system can be expressed exactly as

M

N
= σ [1 − 4pFs(J )]. (10)
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Figure 2. Equation (13), 1= 4pFs(J ), plotted inT –D space, changing the value ofp: (a)
S = 1; (b) S = 3/2.

In particular, whenD = ∞, the functionFs(x) is given by

Fs(x) = S tanh(Sβx) (11)

from which (10) for the pure system withp = 1 reduces to
M

N
= σ [1 − 4S tanh(SβJ )]. (12)

SinceM0 = Nσ is the spontaneous magnetization of the sublatticeL1, the relation (12)
has a form similar to the exact expression (or (3.5)) in [10], although tanh(SβJ ) in (12) is
replaced by tanh(2βJ ) in [10].

In a ferrimagnet, the sublattice magnetizationsσ and m do not have the same sign,
and there may be a compensation temperatureTCOMP at which the total magnetizationM
reduces to zero even thoughσ 6= 0 andm 6= 0. From (10), the compensation point in the
system seems to be exactly given by

1 = 4pFs(J ). (13)

Equation (13) is plotted in figures 2(a) and 2(b) as a function ofD by selecting the two
values ofS, namely S = 1 and S = 3/2, respectively, and changing the value ofp.
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Figure 2. (Continued.)

However, in order that the temperature determined from (13) is actually the compensation
temperature, it must be lower than the transition temperature of the system. In other words,
σ must be not equal to zero even when equation (13) is satisfied.

The problem is now how to evaluate the sublattice magnetizationσ (or (2)) in the
system, which can be expressed as

σ =
〈〈{ z∏

δ=1

[ξi+δ exp(−aSz
i+δ) + 1 − ξi+δ]

}( z∏
δ′=1

exp(bµi+δ′2)

)〉〉
r

f (x, y)|x=0,y=0 (14)

where we used(ξi)
n = ξi (n is an integer). For this, we can use the Van der Waerden

identities, such as

exp(−aSz
i ) = 1 − Sz

i sinh(a) + (Sz
i )

2[cosh(a) − 1] for S = 1 (15)

and

exp(−aSz
i ) = A(a) − B(a)Sz

i + C(a)(Sz
i )

2 − D(a)(Sz
i )

3 for S = 3/2 (16)
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with

A(a) = 1
8[9 cosh(a/2) − cosh(3a/2)]

B(a) = 1
27[27 sinh(a/2) − sinh(3a/2)]

C(a) = 1
2[cosh(3a/2) − cosh(a/2)]

D(a) = 1
3[sinh(3a/2) − 3 sinh(a/2)]

(17)

as well as (7).
Even if we use the Van der Waerden identity, it is generally impossible to calculate

the sublattice magnetizationσ exactly, although the systems withD = ∞ in [10, 11]
are exceptional cases. That is to say, if we try to treat exactly all the spin–spin
correlations appearing in the sublattice magnetization through the expansion of (14) and to
perform properly the random configuration average, the problem becomes mathematically
untractable. As discussed in the previous work, therefore, the decoupling approximation, or

〈〈xjxk(xl)
2 . . . µz

mµz
n〉〉r ∼ 〈〈xj 〉〉r〈〈xk〉〉r〈〈(xl)

2〉〉r . . . 〈〈µz
m〉〉r〈〈µz

n〉〉r (18)

with j 6= k 6= l 6= · · · 6= m 6= n andxi = ξjS
z
j , has been used. The approximation (or the

EFT) corresponds essentially to the Zernike approximation [12–14]. The approximation has
been successfully applied to a great number of disordered systems [12].

Within the framework of the EFT, the sublattice magnetizationσ can be written in a
compact form as follows:

σ = [p{1 − m sinh(a) + q{cosh(a) − 1}} + 1 − p]z

×[cosh(b/2) + 2σ sinh(b/2)]zf (x, y)|x=0,y=0 for S = 1 (19)

and

σ = [p{A(a) − B(a)m + C(a)q − D(a)r} + 1 − p]z

×[cosh(b/2) + 2σ sinh(b/2)]zf (x, y)|x=0,y=0 for S = 3/2 (20)

where the parametersq andr are defined by

q = 〈ξm〈(Sz
m)2〉〉r

〈ξm〉r r = 〈ξm〈(Sz
m)3〉〉r

〈ξm〉r . (21)

Within the EFT, we can easily obtain, in the same way asσ andm,

q = Q1 + 4σ 2Q2 (22)

r = −2σR (23)

with

Q1 = cosh2(a/2) Gs(x) |x=0

= 1
2[Gs(J ) − Gs(0)]

Q2 = sinh2(a/2) Gs(x)|x=0

= 1
2[Gs(J ) − Gs(0)]

R = 2 cosh(a/2) sinh(a/2) Rs(x) |x=0

= Rs(j)

(24)

where the functionsGs(x) andRs(x) depend on the value ofS and are given in the appendix.
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3. The two-dimensional decorated system

In this section, let us examine the magnetic properties of the two-dimensional decorated
ferrimagnetic system withz = 4 depicted in figure 1, where the sublatticeL1 forms the
square lattice, on the basis of the formulation given in section 2. Then, let us study them
separately by taking the two values ofS, namelyS = 1 andS = 3/2, in sections 3.1 and
3.2.

3.1. The decorated system withS = 1

Substitutingz = 4, (8) and (22) into (19) and expanding the right-hand side of (19), we
obtain the polynomial equation forσ with odd powers:

σ = aσ + bσ 3 + · · · (25)

where the coefficientsa, b, . . . can be easily derived from (19), e.g.

a = 8p(KA1 + A2) (26)

with

A1 = sinh(a)[1 + pQ1{cosh(a) − 1}]3 cosh4(b/2) f (x, y)|x=0,y=0

A2 = [1 + pQ1{cosh(a) − 1}]4 sinh(b/2) cosh3(b/2) f (x, y)|x=0,y=0.
(27)

When the temperature is higher than the transition temperature, the whole system
is demagnetized. The demagnetization of the system may be realized continuously or
discontinuously at the transition temperature. For the second-order transition, the transition
temperatureTC can be determined by considering only the linear term in (25): It can be
determined by the conditions

a = 1 b < 0. (28)

In the vicinity of the second-order phase transition line, the sublattice magnetizationσ is
given by

σ 2 = 1 − a

b
. (29)

The right-hand side must be positive. If this is not the case, the transition is of the first
order, and hence the point at which

a = 1 b = 0 (30)

is the tricritical point. However, examining the numerical values ofa andb in the system
for all values ofD, p andα defined by

α = J ′/J (31)

one can find that the condition (30) is not satisfied in the two-dimensional decorated system
with S = 1.

Figure 3 shows the variations in the transition temperatureTC determined from (28) as
a function ofD/J for the two systems withp = 1.0 andp = 0.5, selecting the five values
of α. The solid curves labelledp = 1.0 and 0.5 are the same as the corresponding curves
obtained in figure 2(a). Accordingly, in order that the compensation point (or points) may
exist in the system with the fixed values ofp andα, each solid curve a–j must be higher
than the solid curves labelledp = 1.0 and 0.5. For instance, the system withp = 1.0
and α = 2.87 can exhibit one compensation point in the region−1.0 6 D/J 6 0.0 and
two compensation points in the region−1.87 < D/J < −1.0. The system withp = 0.5
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and α = 2.87 exhibits one compensation point for the regionD/J > −1.0. In this way,
comparing the behaviour ofTC in the figure with the results of figure 2(a), one can obtain
much information on the behaviour ofTCOMP in the system, although the system with
α = 0.0 (see curves i and j) does not exhibit any compensation point for any values ofp.

Figure 3. The phase diagram in theT –D plane for the decorated ferrimagnetic system depicted
in figure 1, when the value ofS is fixed at 1. The curves labelledp = 1.0 and 0.5 correspond
to the results obtained from the relation 1= 4pFs(J ) in figure 2(a). Curves a–j representTC .
Curve a (forp = 1.0) and curve b (forp = 0.5) are obtained for the system withα = 4.0.
Curve c (forp = 1.0) and curve d (forp = 0.5) are for the system withα = 2.87. Curve e (for
p = 1.0) and curve f (forp = 0.5) are for the system withα = 1.5. Curve g (forp = 1.0) and
curve h (forp = 0.5) are for the system withα = 0.5. Curve i (forp = 1.0) and curve j (for
p = 0.5) are for the system withα = 0.0.

In figure 4, therefore, the concentration dependences ofTC andTCOMP are depicted for
the system withα = 2.87, selecting the typical values ofD/J from figure 3. As is seen
from the figure, theTC versusp curve does not exhibit a large variation for the change in
D/J , when the value ofJ ′ (or α) takes a value higher thanα = 0.5, such asα = 2.87.
On the other hand, theTCOMP versusp curve in the system may exhibit a characteristic
feature when the value ofD/J becomes smaller than−1.0. As shown forD/J = −1.5,
the system shows two compensation points in the region 0.8 < p 6 1.0 although, for the
systems withD/J = 0.0 andD/J = −1.0, only one compensation point can be obtained
in the regions 0.25 6 p 6 1.0 and 0.5 6 p 6 1.0, respectively. Here, note that these results
are consistent with those predicted in figure 3.

Now, in order to prove whether the predictions ofTCOMP obtained from figures 2(a),
3 and 4 in the decorated two-dimensional ferrimagnetic system withS = 1 are correct or
not, it is necessary to study the temperature dependence of the total magnetization (6) or
(10). The thermal variation inM in the system withz = 4 can also be obtained by solving
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Figure 4. The phase diagram (TC and TCOMP ) in T –p space for the system withα = 2.87,
when three values ofD/J are selected: curve aD/J = 0.0; curve b,D/J = −1.0; curve c,
D/J = −1.5.

the coupled equations forσ , m and q of section 2 numerically. The numerical results of
the system withα = 2.87 are presented in figure 5, selecting typical values ofp andD/J

from figure 4. Curves a, b and c correspond to the thermal variations inM in the system
with p = 0.5 when the three values ofD/J are selected as 0.0,−1.0 and−1.5. These
results are equivalent to the predictions ofTCOMP obtained from figure 4. Curve a may
exhibit one compensation point at a finite temperature but curves b and d do not exhibit
any compensation point at a finite temperature, while curve c has a characteristic behaviour
showing a minimum and a maximum belowTC . Curve d, which is obtained for the system
with p = 0.9 andD/J = −1.5, may have two compensation points at the same temperature
as those predicted from figure 4. Thus, one can understand that a variety of features for
TCOMP in the decorated system withS = 1 is obtained correctly from figures 2(a), 3 and 4.

Finally, it is worth noting that the saturation magnetization ofM in figure 5 is given by
|M|/N = 0.5 for the curves a, c and d, although for curve b it reduces to zero. The reasons
are as follows. Curve a is obtained forD/J = 0.0 andp = 0.5, so that the sublattice
magnetizationsσ and m at T = 0 K are given byσ = 1/2 andm = −1.0, and hence
|M|/N = 0.5. On the other hand, for the systems withD/J < −1.0 the spin state of the
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Figure 5. The temperature dependence of the total magnetizationM plotted for the two-
dimensional ferrimagnetic system withS = 1 andα = 2.87, when four pairs of values ofD/J

and p are selected: curve a,D/J = 0.0, p = 0.5; curve b,D/J = −1.0, p = 0.5; curve c,
D/J = −1.5, p = 0.5; curve d,D/J = −1.5, p = 0.9.

decorated B atoms isSz
m = 0.0 at T = 0 K, independent ofp, from which the saturation

magnetization of curves c and d is also given byM/J = 0.5. However, the value of
D/J = −1.0 is marginal, and hence half of the decorated magnetic B atoms are in the
Sz

m = −1.0 state but the other half are in theSz
m = 0.0 state atT = 0 K. From this, the

saturation magnetizationM for the system withD/J = −1.0 andp = 0.5 reduces to zero,
sinceσ = 1/2 andm = −1/2 at T = 0 K.

3.2. The decorated system withS = 3/2

As discussed in section 3.1, the curves in figure 2(a) give us some indication of the
compensation point (or points) in the system withS = 1, when the transition temperatureTC

is larger than the corresponding curve in figure 2. As predicted in figure 2(b), on the other
hand, the behaviour of equation (13) obtained for the decorated ferrimagnetic system with
S = 3/2 is rather different from that of figure 2(a). It implies that the features ofTCOMP

in the system withS = 3/2 may be rather different from those discussed in section 3.1.
Let us here study the phase diagram (TC andTCOMP ) of the two-dimensional decorated

system withS = 3/2 andz = 4. Following the same procedure as in section 3.1, we can
also obtain an equation similar to (25) or (29). Then, for any values ofD, p andα, one can
find that the condition (28) is always satisfied for the two-dimensional system withS = 3/2
and hence the phase transition is also second order.

Figure 6 shows the phase diagram inT –D space for the two-dimensional decorated
system withS = 3/2, when three values ofα(= 3.5, 1.5 and 0.0) and three values of
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p (= 1.0, 0.5 and 0.4) are selected. The thin and thick solid lines representTC and
equation (13), respectively (or the corresponding results in figure 2(b)). Therefore, in order
for a compensation point (or points) to exist in the system with fixed values ofα and p,
the TC line must be higher than the corresponding thick line. For the case ofα = 1.5, a
compensation point can be found in the system withp = 1.0 for the regionD/J < −2.02
and in the system withp = 0.5 for the region−1.0 < D/J < −0.76. However, two
compensation points can be obtained for the system withα = 1.5 andp = 0.4 in the region
−0.79 < D/J < −0.5. Thus, comparing the results of figure 6 with those of figure 3 or
figure 4, one can find that the roles ofp for finding the two compensation points are rather
different, depending on whether the value ofS in the system is 1 or 3/2.

Figure 6. The phase diagram in theT –D plane for the decorated ferrimagnetic system, when
the value ofS is fixed at 3/2. The thick solid lines labelledp = 1.0, 0.5 and 0.4 are the results
obtained from equation (13) and the thin solid lines representTC . Curves a, b and c are obtained
for the system withα = 3.5, selecting three values ofp (curve a,p = 1.0; curve b,p = 0.5;
curve c,p = 0.4). Curves a′, b′ and c′ are for the system withα = 1.5 and curves a′′, b′′ and
c′′ are for the system withα = 0.0, when three values ofp are selected as (curves a′ and a′′,
p = 1.0; curves b′ and b′′, p = 0.5; curves c′ and c′′, p = 0.4).

In figure 7, the phase diagram of the system withS = 3/2 andα = 1.5 is depicted in
the T –p space, changing the value ofD/J . The thin and thick solid lines representTC

andTCOMP , respectively. The figure clearly indicates that the role ofp for finding the two
compensation points in the decorated system withS = 3/2 is different from that in figure 4.
The possibility of two compensation points in the system withS = 3/2 andα = 1.5 can
be found in the region 0.355 < p < 0.5 whenD/J = −0.7. In figure 4, on the other
hand, the possibility of two compensation points in the system withS = 1.0, α = 2.87 and
D/J = −1.5 is found even for the pure(p = 1.0) case but disappears for a concentration
less thanp = 0.8. Thus, for the system withS = 3/2 the possibility of two compensation
points can be obtained only when there is a large dilution of non-magnetic atoms, namely
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0.2 < p < 0.5, in the decorated sites (or full circles in figure 1), depending on the values
of a negativeD/J and a finite value ofα.

Figure 7. The phase diagram (TC and TCOMP ) in T –p space for the system withα = 1.5,
when six values ofD/J are selected: curve a,D/J = 0.0; curve b,D/J = −0.5; curve c,
D/J = −0.7; curve d,D/J = −1.0; curve e,D/J = −1.5; curve f,D/J = −2.5.

4. Conclusions

In this work, we have studied the magnetic properties (TC , TCOMP and magnetization curve)
of the decorated ferrimagnetic Ising system with three kinds of atom, of which one with spin
1/2 forms the sublatticeL1 and the other two (a spin-S (> 1/2) magnetic atom and a non-
magnetic atom) are randomly distributed on the sublatticeL2. They have been discussed
within the framework of the EFT with correlations. Numerical results are obtained in
section 3 for the two-dimensional lattice. In particular, we have examined in detail the
effects of crystal-field interaction and spin value in the spin-S atoms onTC andTCOMP . As
shown in figures 2–7, the results obtained are extremely interesting.

In this work, we have applied the EFT to numerical evaluations ofσ and TC for the
two-dimensional system withS = 1 or S = 3/2. However, one should note the following
facts. If the exact calculation can be made for a system with a finite (negative) value ofD,
the exactTC will be lower than that obtained from the EFT, as discussed for the mixed spin-
1/2 and spin-S Ising system on the honeycomb lattice [15] having a Hamiltonian similar
to (1). On the other hand, the evaluation ofTCOMP in the decorated ferrimagnetic Ising
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system can be done exactly as noted in sections 2 and 3. The situation for finding the
compensation point (or points) in the decorated system withS does not change even when
the exactTC is obtained, since theTCOMP lines in figures 3–7 are the exact results. Then,
the only difference is that the critical value ofα andp for finding TCOMP will be changed
in the phase diagrams.

Finally, we have shown in this paper that the decorated ferrimagnetic Ising system with
magnetic and non-magnetic atoms randomly distributed on the sublatticeL2 may exhibit
many unexpected features in the phase diagrams, depending on the values ofD, p and
S. The possibilities of two compensation points are clearly different in the systems with
S = 1 or S = 3/2 and the thermal variation inM for curve c in figure 5 exhibited a
maximum and a minimum belowTC . These results have not been predicted in the Néel
theory of ferrimagnetism [1, 2]. Thus, we may conclude by saying that the decorated
ferrimagnetic Ising system investigated here is a fruitful system from both the theoretical
and the materials science point of view. We hope that the present study will stimulate
experimental and theoretical work on the systems considered here.

Appendix.

The functionsGs(x) andRs(x) in (24) are defined by

Gs(x) = 2 cosh(βx)

2 cosh(βx) + exp(−βD)
for S = 1 (A1)

and

Gs(x) = 1

4

9 cosh(3βx/2) + exp(−2βD) cosh(βx/2)

cosh(3βx/2) + exp(−2βD) cosh(βx/2)
(A2)

Rs(x) = 1

8

27 sinh(3βx/2) + exp(−2βD) sinh(βx/2)

cosh(3βx/2) + exp(−2βD) cosh(βx/2)
for S = 3/2. (A3)
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[15] Kaneyoshi T, Jăsc̆ur M and Tomczak P 1993J. Phys.: Condens. Matter4 L653


